
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Analysis of Optimal Strategy in Chopsticks Game

Using Graph-Based Approach

Dave Daniell Yanni - 135230031

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1d06163606@gmail.com, 13523003@std.stei.itb.ac.id

Abstract—Matrix decomposition, as the name suggests, is a

method or process of breaking down a matrix into several simpler

matrices. It is often used to simplify computations in various

applications, one of which is solving linier systems. Examples of

commonly used matrix decomposition methods include LU

decomposition and QR decomposition. This paper provides a

comparative analysis of LU and QR decomposition techniques for

solving linier systems, focusing on their computational efficiency

and numerical accuracy

Keywords—Linier systems, LU, matrix decomposition, QR

I. INTRODUCTION

Graph theory is a branch of mathematics that studies graphs,

which are structures used to model relationships between pairs

of objects. A graph consists of nodes and edges that connect

these nodes, representing relationships or transitions between

states

The Chopsticks game is a simple yet strategic hand game that

requires careful planning and foresight to secure a win. Despite

its straightforward rules, winning often depends on following a

series of optimal moves, forming what can be described as

winning sequences, specific combinations of actions that

guarantee victory.

This research paper aims to explore the use of a graph-based

approach to identify optimal strategies for the Chopsticks game.

By modeling game states as nodes and possible moves as edges

in a directed graph, the study seeks to analyze the underlying

structure of the game and determine the best moves to maximize

the chances of winning.

II. THEORETICAL BASIS

A. Graph
Graphs are structures used to model relationships between

pairs of objects. A graph consists of nodes and edges that

connect these nodes, representing relationships or transitions

between states.

In Fig 2.1, A, B, C, and D are considered nodes, and the lines

connecting them are edges.

Fig. 2.1 Nodes and Edges

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

Graphs are divided into two different categories. The first one

is simple graphs, a graph with only single edges, this means

there are only 1 edge connecting 2 different nodes.

Fig. 2.2 Simple Graphs

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

The second type of graph is non simple graphs, graphs that

contain a looping edge, or multiple edges connecting two

different nodes.

Fig. 2.3 Non-Simple Graphs

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

Non simple graphs are then differentiated into 2 different

categories too, the first one is multi-graphs, graphs that have

multiple edges connecting two different nodes.

mailto:1d06163606@gmail.com
mailto:13523003@std.stei.itb.ac.id
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig. 2.3 Multi-Graphs

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

The second one is pseudo-graphs, graphs that contain a

looping edge, an edge that connects to the same node.

Fig. 2.3 Psuedo-Graphs

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

Graphs are also divided based on whether they have directed

edges or not. The pictures below show the two

Fig. 2.4 Undirected Graphs

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

Fig. 2.5 Directed Graphs

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

B. Graph Terminology
There are some terminologies used in graph theory, such as:

1. Adjacent. Two edges are adjacent if they are connected

directly by an edge.

2. Incidence or intersect. An edge which is connected to a

node.

3. Isolated Node. A node which is not connected to any

other node.

4. Null Graph. A graph with no edges.

5. Degree. The number of edges intersecting with a node.

C. Graph Representation

Graphs can be represented through three different ways.

Which includes:

1. Adjacency Matrix.

Fig. 2.6 Adjacency Matrix

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

For matrix A, row i, column j, A[i, j] = 1, if node i is

adjacent to node j, and A[i, j] = 0, if they are not adjacent.

2. Incidency Matrix.

Fig. 2.7 Incidency Matrix

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

For matrix A, row i, column j, A[i, j] = 1, if edge i

intersects with node j, and A[i, j] = 0, if they do not

intersect.

3. Adjacency List

Fig. 2.8 Adjacency List

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

 List of every node and its adjacent nodes.

D. Chopsticks Game
Chopsticks is a two-player game where each player starts with

one point on each hand. A player can add points to the

opponent’s hand; for example, if the current player’s left hand

has 1 point and the opponent’s left hand has 2 points, the current

player can add 1 point to the opponent’s left hand, totaling 3

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

points. A player can also split the points between their own

hands. For instance, if the player has 2 points on the left hand

and 1 point on the right hand, they can split the points so that

there are 3 points on the right hand and 0 points on the left hand.

However, splitting points cannot simply swap values; for

example, having 2 points on the right and 1 point on the left is

not a valid split.

To represent the Chopsticks game as a graph, a game state is

represented as a node. A game state is the current state of the

game and is defined by the variables LeftCurrent, RightCurrent,

LeftNext, and RightNext, where LeftCurrent represents the

current player’s left-hand points. The same logic applies to the

other variables. Edges in the graph represent the moves made by

the current player.

E. Breadth First Search
Breadth-First Search is a searching algorithm used to explore

all possible adjacent nodes from a given starting node. After

identifying all adjacent nodes of the starting node, it proceeds to

explore the adjacent nodes of each of those nodes.

Fig. 2.9 BFS vs DFS

Source:

https://www.geeksforgeeks.org/difference-between-bfs-and-

dfs/

F. Minimax Algorithm
The Minimax Algorithm is used to find the most optimal

move in a decision-based game, assuming the opponent also

plays optimally.

Fig. 2.10 Example Of Minimax 1

Source:

https://www.geeksforgeeks.org/minimax-algorithm-in-game-

theory-set-1-introduction/

Fig. 2.11 Example Of Minimax 2

Source:

https://www.geeksforgeeks.org/minimax-algorithm-in-game-

theory-set-1-introduction/

This is a backtracking algorithm that starts from the edge or a

leaf node. In Figure 2.10, the left subtree has nodes valued at 3

and 5. After the current player's move (left or right), the

opponent will choose the lower value, as this is the most optimal

move to minimize the current player's score. Similarly, in the

right subtree, the chosen value would be 2. This leads to the state

shown in Figure 2.11. The current player aims to maximize their

points, so the left subtree is selected because it has the highest

value.

III. IMPLEMENTATION

A. Code Description

This code is used to generate all possible nodes in the

chopsticks game and write the output in a csv file. This is to

represent the graph as an adjacency list.

class ChopsticksGame:

 def __init__(self):

 self.states = {} # Dictionary to store all states

 self.node_counter = 1 # Counter for node IDs

 def is_valid_hand(self, value):

 """Check if a hand value is valid (0-4)"""

 return 0 <= value <= 4

 def get_next_states(self, left_current, right_current,

next_left, next_right):

 """Generate all possible next states from current

position"""

 next_states = []

 # Skip if both hands are dead (0)

 if left_current == 0 and right_current == 0:

 return next_states

 # Try all possible combinations of tapping

 for tap_from in ['left', 'right']:

 for tap_to in ['left', 'right']:

 if tap_from == 'left' and left_current == 0:

 continue

 if tap_from == 'right' and right_current == 0:

 continue

 # Calculate the new value after tapping

 tap_value = left_current if tap_from == 'left' else

right_current

 new_next_left=next_left

 new_next_right=next_right

 if tap_to == 'left':

 new_value = next_left + tap_value

 new_next_left = 0 if new_value >= 5 else

new_value

 else:

 new_value = next_right + tap_value

https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/
https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/
https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/
https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/
https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/
https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

 new_next_right = 0 if new_value >= 5 else

new_value

 # Add valid next state

 if self.is_valid_hand(new_next_left) and

self.is_valid_hand(new_next_right):

 next_states.append((new_next_left,

new_next_right, left_current, right_current))

 # Add splitting as a possibility

 total = left_current + right_current

 for split_left in range(max(0, total - 4), min(4, total) +

1):

 split_right = total - split_left

 if (split_left != left_current or split_right !=

right_current) and (split_left != right_current and split_right

!= left_current):

 next_states.append((next_left, next_right, split_left,

split_right))

 return next_states

 def generate_all_states(self):

 """Generate all possible game states"""

 # Start with initial state (1,1,1,1)

 states_to_process = [(1, 1, 1, 1)]

 processed_states = set()

 while states_to_process:

 current_state = states_to_process.pop(0)

 if current_state in processed_states:

 continue

 # Add current state to processed set

 processed_states.add(current_state)

 # Get node ID for current state

 if current_state not in self.states:

 self.states[current_state] = self.node_counter

 self.node_counter += 1

 # Generate next possible states

 current_left, current_right, next_left, next_right =

current_state

 next_positions = self.get_next_states(current_left,

current_right, next_left, next_right)

 # Add new states to processing queue

 for next_pos in next_positions:

 new_state = (next_pos[0], next_pos[1], next_pos[2],

next_pos[3])

 if new_state not in processed_states:

 states_to_process.append(new_state)

 def export_to_csv(self, filename="chopsticks_states.csv"):

 """Export the generated states to a CSV file"""

 with open(filename, 'w') as f:

 # Write header

 f.write('Nodes,Directed Adjacent Nodes,"Game State

(LeftCurrent, RightCurrent, LeftNext, RightNext)"\n')

 # Write each state

 for state, node_id in sorted(self.states.items(),

key=lambda x: x[1]):

 # Get next possible states

 current_left, current_right, next_left, next_right =

state

 next_positions = self.get_next_states(current_left,

current_right, next_left, next_right)

 # Convert next positions to node IDs

 adjacent_nodes = set() # Use a set to avoid

duplicates

 for next_pos in next_positions:

 next_state = (next_pos[0], next_pos[1],

next_pos[2], next_pos[3])

 if next_state in self.states:

 adjacent_nodes.add(self.states[next_state])

 # Sort the adjacent nodes numerically and write the

row

 adjacent_str = ",".join(map(str,

sorted(adjacent_nodes))) if adjacent_nodes else "-1"

 f.write(f'{node_id},"{adjacent_str}","{state[0]},{s

tate[1]},{state[2]},{state[3]}"\n')

Generate and export the states

game = ChopsticksGame()

game.generate_all_states()

game.export_to_csv()

Print some statistics

print(f"Total number of unique states: {len(game.states)}")

There are 583 unique nodes representing game states.

However, only the first 50 nodes are displayed above for brevity.

Readers can run the provided code to generate and view the

complete list of nodes.

Nodes,Directed Adjacent Nodes,"Game State (LeftCurrent,

RightCurrent, LeftNext, RightNext)"

1,"2,3,4,5","1,1,1,1"

2,"6,7,8,9,10,11","2,1,1,1"

3,"10,11,12,13,14,15","1,2,1,1"

4,"3,16,17,18","1,1,0,2"

5,"2,19,20,21","1,1,2,0"

6,"22,23,24,25,26,27,28","3,1,2,1"

7,"26,27,28,29,30,31,32","1,3,2,1"

8,"6,33,34,35,36,37","2,1,2,1"

9,"14,36,37,38,39,40","1,2,2,1"

10,"41,42,43,44","1,1,0,3"

11,"45,46,47,48","1,1,3,0"

12,"7,35,49,50,51,52","2,1,1,2"

13,"15,38,51,52,53,54","1,2,1,2"

14,"25,55,56,57,58,59,60","3,1,1,2"

15,"30,58,59,60,61,62,63","1,3,1,2"

16,"64,65,66,67","0,3,1,1"

17,"68,69,70","0,2,0,2"

18,"68,71,72","0,2,2,0"

19,"66,67,73,74","3,0,1,1"

20,"70,75,76","2,0,0,2"

21,"72,75,77","2,0,2,0"

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

22,"78,79","0,1,3,1"

23,"80,81,82,83","2,4,3,1"

24,"22,84,85,86,87,88,89","3,1,3,1"

25,"24,29,87,89,90,91","2,2,3,1"

26,"50,92,93,94,95","2,1,0,4"

27,"34,49,92,96,97,98","2,1,2,2"

28,"33,93,96,99,100","2,1,4,0"

29,"56,101,102,103,104,105,106","3,1,1,3"

30,"57,61,91,104,106,107","2,2,1,3"

31,"108,109","0,1,1,3"

32,"81,110,111,112","2,4,1,3"

33,"113,114,115,116,117,118","4,1,2,1"

34,"119,120,121,122,123,124","2,3,2,1"

35,"26,28,125,126,127,128","2,2,2,1"

36,"7,34,93,129,130,131","2,1,0,3"

37,"6,49,93,132,133,134","2,1,3,0"

38,"58,60,135,136,137,138","2,2,1,2"

39,"116,139,140,141,142,143","4,1,1,2"

40,"144,145,146,147,148,149","2,3,1,2"

41,"127,137,150,151,152,153,154","1,3,1,1"

42,"153,155,156,157,158","0,4,1,1"

43,"159,160,161,162","0,3,0,2"

44,"160,163,164,165","0,3,2,0"

45,"153,157,158,166,167","4,0,1,1"

46,"85,103,128,138,152,153,154","3,1,1,1"

47,"161,162,168,169","3,0,0,2"

48,"164,165,169,170","3,0,2,0"

49,"123,124,171,172,173,174","3,2,2,1"

50,"117,118,175,176,177,178","1,4,2,1"

…

This code is used to visualize the graph from the data in the

csv fille.

import networkx as nx

import matplotlib.pyplot as plt

import pandas as pd

class ChopsticksGraphVisualizer:

 def __init__(self, filename="chopsticks_states.csv"):

 self.filename = filename

 self.graph = nx.DiGraph()

 def load_states_from_csv(self):

 """Load states from the exported CSV file and build the

graph."""

 df = pd.read_csv(self.filename)

 for _, row in df.iterrows():

 node_id = str(row['Nodes']).strip()

 adjacent_nodes_str = str(row['Directed Adjacent

Nodes']).strip('"')

 adjacent_nodes = adjacent_nodes_str.split(',') if

adjacent_nodes_str != "-1" else []

 # Debugging print statements

 print(f"Node ID: {node_id}, Adjacent Nodes:

{adjacent_nodes}")

 # Ensure node_id is not empty or zero

 if node_id and node_id != "0":

 self.graph.add_node(node_id, label=node_id)

 for adjacent in adjacent_nodes:

 if adjacent and adjacent != "0":

 self.graph.add_edge(node_id, adjacent)

 def visualize(self):

 """Visualize the graph using NetworkX and

Matplotlib."""

 pos = nx.spring_layout(self.graph) # Layout for nodes

 labels = nx.get_node_attributes(self.graph, 'label')

 plt.figure(figsize=(12, 8))

 nx.draw(

 self.graph, pos, with_labels=False, node_size=500,

node_color='skyblue',

 font_weight='bold', arrowsize=10, edge_color='gray'

)

 nx.draw_networkx_labels(self.graph, pos, labels,

font_size=8)

 plt.title("Chopsticks Game State Graph")

 plt.show()

Instantiate and visualize

visualizer =

ChopsticksGraphVisualizer("chopsticks_states.csv")

visualizer.load_states_from_csv()

visualizer.visualize()

Fig. 3.1 Chopsticks Game Representation

The visualization appears cluttered due to the high density of

nodes and edges. Readers are encouraged to run the provided

code to generate and explore a clearer version of the graph.

from collections import defaultdict, deque

class ChopsticksGame:

 def __init__(self):

 self.states = {}

 self.node_counter = 1

 self.graph = defaultdict(list)

 def is_valid_hand(self, value):

 """Check if a hand value is valid (0-4)"""

 return 0 <= value <= 4

 def get_next_states(self, left_current, right_current,

next_left, next_right):

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

 """Generate all possible next states from current

position"""

 next_states = []

 if left_current == 0 and right_current == 0:

 return next_states

 # Handle taps

 for tap_from in ['left', 'right']:

 for tap_to in ['left', 'right']:

 if tap_from == 'left' and left_current == 0:

 continue

 if tap_from == 'right' and right_current == 0:

 continue

 new_next_left = next_left

 new_next_right = next_right

 tap_value = left_current if tap_from == 'left' else

right_current

 if tap_to == 'left':

 new_value = next_left + tap_value

 new_next_left = 0 if new_value >= 5 else

new_value

 else:

 new_value = next_right + tap_value

 new_next_right = 0 if new_value >= 5 else

new_value

 if self.is_valid_hand(new_next_left) and

self.is_valid_hand(new_next_right):

 next_states.append((new_next_left,

new_next_right, left_current, right_current))

 # Handle splits

 total = left_current + right_current

 for split_left in range(max(0, total - 4), min(4, total) +

1):

 split_right = total - split_left

 if (split_left != left_current or split_right !=

right_current) and \

 self.is_valid_hand(split_left) and

self.is_valid_hand(split_right):

 next_states.append((next_left, next_right, split_left,

split_right))

 return next_states

 def generate_all_states(self):

 """Generate all possible game states and their

connections"""

 states_to_process = [(1, 1, 1, 1)]

 processed_states = set()

 while states_to_process:

 current_state = states_to_process.pop(0)

 if current_state in processed_states:

 continue

 processed_states.add(current_state)

 if current_state not in self.states:

 self.states[current_state] = self.node_counter

 self.node_counter += 1

 next_states = self.get_next_states(*current_state)

 for next_state in next_states:

 if next_state not in processed_states:

 states_to_process.append(next_state)

 self.graph[current_state].append(next_state)

 def is_terminal(self, state):

 """Check if the state is terminal (game over)"""

 left_current, right_current, next_left, next_right = state

 return (left_current == 0 and right_current == 0) or

(next_left == 0 and next_right == 0)

 def evaluate_state(self, state, moves):

 """Evaluate terminal states considering number of

moves"""

 left_current, right_current, next_left, next_right = state

 if left_current == 0 and right_current == 0:

 return 1000 - moves if moves % 2 == 1 else -1000 +

moves

 if next_left == 0 and next_right == 0:

 return -1000 + moves if moves % 2 == 1 else 1000 -

moves

 return 0

 def minimax(self, state, depth, alpha, beta,

maximizing_player, moves=0):

 """Minimax algorithm with alpha-beta pruning"""

 if depth == 0 or self.is_terminal(state):

 return self.evaluate_state(state, moves), None

 best_move = None

 if maximizing_player:

 max_eval = float('-inf')

 for next_state in self.graph[state]:

 eval_score, _ = self.minimax(next_state, depth - 1,

alpha, beta, False, moves + 1)

 if eval_score > max_eval:

 max_eval = eval_score

 best_move = next_state

 alpha = max(alpha, eval_score)

 if beta <= alpha:

 break

 return max_eval, best_move

 else:

 min_eval = float('inf')

 for next_state in self.graph[state]:

 eval_score, _ = self.minimax(next_state, depth - 1,

alpha, beta, True, moves + 1)

 if eval_score < min_eval:

 min_eval = eval_score

 best_move = next_state

 beta = min(beta, eval_score)

 if beta <= alpha:

 break

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

 return min_eval, best_move

 def find_shortest_winning_path(self, state):

 """Find the shortest path to victory"""

 queue = deque([(state, [], 0)])

 visited = {state: 0}

 while queue:

 current_state, path, moves = queue.popleft()

 left_current, right_current, next_left, next_right =

current_state

 if left_current == 0 and right_current == 0 and moves

% 2 == 1:

 return path[0] if path else None, moves

 elif next_left == 0 and next_right == 0 and moves %

2 == 0:

 return path[0] if path else None, moves

 for next_state in self.graph[current_state]:

 if next_state not in visited or visited[next_state] >

moves + 1:

 visited[next_state] = moves + 1

 new_path = path + [next_state] if not path else

path

 queue.append((next_state, new_path, moves +

1))

 return None, float('inf')

 def analyze_position(self, left_current, right_current,

left_next, right_next, depth=5):

 """Analyze position using minimax and shortest path"""

 self.generate_all_states()

 current_state = (left_current, right_current, left_next,

right_next)

 minimax_value, minimax_move =

self.minimax(current_state, depth, float('-inf'), float('inf'),

True)

 shortest_move, moves_to_win =

self.find_shortest_winning_path(current_state)

 print("\nPosition Analysis:")

 print(f"Current State: {current_state}")

 print("\n1. Minimax Analysis:")

 print(f"Best Move: {minimax_move}")

 print(f"Evaluation: {minimax_value}")

 print("\n2. Shortest Path Analysis:")

 if shortest_move:

 print(f"Best Move: {shortest_move}")

 print(f"Moves to win: {moves_to_win}")

 else:

 print("No guaranteed winning path found")

 if shortest_move:

 return shortest_move, f"Winning in {moves_to_win}

moves"

 elif minimax_value > 0:

 return minimax_move, "Winning position (Minimax)"

 elif minimax_move:

 return minimax_move, "Best defensive move"

 return None, "No moves available"

game = ChopsticksGame()

best_move, strategy = game.analyze_position(1, 1, 3, 4)

#initial state

print(f"\nFinal Recommendation:")

print(f"Best move: {best_move}")

print(f"Strategy: {strategy}")

This code is to simulate a current state in a game, and it will

find the next best move to make or the next best possible state.

There are two algorithms used to find the best move, the first

one is using bfs algorithm to find the shortest path to victory,

and the second one is minimax algorithm to find the best move

based on the evaluation points.

IV. RESULTS AND ANALYSIS

Fig. 4.1 Experiment Results 1

Fig. 4.2 Experiment Results 2

In this study, the optimal strategies for the Chopsticks game

were identified using two graph-based approaches: the Minimax

algorithm with alpha-beta pruning and Breadth-First Search for

finding the shortest path to victory. The entire game was

modeled as a directed graph, where nodes represent game states

and edges represent possible moves. A total of 583 unique nodes

were generated, representing all possible combinations of hand

points.

The Minimax algorithm evaluated each state by simulating all

possible outcomes up to a specified depth. It identified moves

that maximized the player's chance of winning while accounting

for the opponent’s best responses. For example, starting from

the initial state (1, 1, 1, 1), the algorithm suggested moves that

led to either an immediate win or a path with minimal risk.

Using BFS, the shortest path to a winning state was

determined by minimizing the number of moves required. The

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

algorithm efficiently found paths that guaranteed victory if

executed correctly. Starting from state (1, 1, 4, 0), BFS

identified a path with a length of 1 moves to secure a win (refer

to Fig. 4.1).

V. DISCUSSION

The results highlight the effectiveness of modeling the

Chopsticks game as a directed graph. By using Minimax,

players can make decisions that account for both offensive and

defensive strategies. This approach, however, is

computationally intensive and depends on depth-limited

searches, which may not explore all possible future outcomes.

Conversely, BFS guarantees finding the shortest path to victory

but assumes that the opponent plays suboptimally, which limits

its applicability in real-world scenarios with skilled players.

The Minimax strategy offers a flexible framework for

evaluating multiple moves and their long-term consequences,

making it ideal for strategic depth. In contrast, BFS is best suited

for scenarios where immediate results are prioritized. The

choice of strategy depends on the player’s goal, whether to

maximize long-term advantage or secure a quick win.

VI. CONCLUSION

This research demonstrates that graph-based approaches are

powerful tools for optimizing gameplay strategies in the

Chopsticks game. By modeling game states as nodes and

transitions as directed edges, both Minimax and BFS algorithms

can effectively guide decision-making. Minimax provides a

comprehensive analysis by considering all possible outcomes,

while BFS offers a fast solution for finding guaranteed winning

sequences.

Future work could explore hybrid strategies that combine the

strengths of both methods, balancing computational efficiency

with strategic depth. Additionally, incorporating probabilistic

modeling to handle uncertainties in opponent behavior would

further enhance strategy formulation.

VI. ACKNOWLEDGMENT

The author extends heartfelt gratitude to God for providing

wisdom, perseverance, and opportunity to complete this paper

successfully. Sincere appreciation is all extended to Mr. Dr. Ir.

Rinaldi Munir, M.T., as the lecturer of the IF1220 Discrete

Mathematics course.

REFERENCES

[1] Munir, Rinaldi. 2024. “Graf (Bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf

(accessed on 6 December 2024).
[2] Munir, Rinaldi. 2024. “Graf (Bagian 2)”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-

Graf-Bagian2-2024.pdf \
(accessed on 6 December 2024).

[3] Breadth First Search or BFS for a Graph.

https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
(accessed on 8 December 2024).

[4] Minimax Algorithm in Game Theory.

https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-
1-introduction/

 (accessed on 8 December 2024).

[5] Difference between BFS and DFS.
 https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/

 (accessed on 8 December 2024).

STATEMENT

I hereby declare that this paper is my own work, not a

paraphrase or translation of someone else’s paper, and not

plagiarism.

Bandung, 8 Januari 2025

Dave Daniell Yanni 13523003

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf%20/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf%20/
https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/
https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/
https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/
https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/

